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Abstract
Faraday waves with three modes, on the interface between superposed liquids
in an infinite boxed basin subjected to vertical excitation, were studied.
The longitudinally exciting acceleration is decomposed into two modes. The
solutions are constructed using the method of multiple timescales. The
solvability conditions are exploited to derive a system of nonlinear autonomous
six-order ordinary differential equations governing the modulation of the
amplitudes and phases of the resonated waves. These equations have been used
to determine steady-state solutions and hence their stability. The conditions of
existence of both regular periodic and chaotic regimes are obtained analytically
and in numerical applications pictures.

PACS number: 47.10.−g

1. Introduction

The motion of liquid with a free surface is of great concern in many engineering disciplines
such as fuel sloshing of rocket propellant, oil oscillation in large storage tanks, water oscillation
in reservoirs due to an earthquakes, sloshing of water in pressure-suppression pools of boiling
water reactors and several others.

The first research describing standing waves caused by a forcing whose frequency was
twice a resonance frequency was done by Michael Faraday [1]. He observed that when a water-
filled basin is placed on a plane that oscillates vertically with approximately twice a resonance
frequency, waves are generated on the surface. By introducing a coordinate system moving
with the basin, we can interpret this problem as that of a stationary basin with oscillating
gravity. In the literature, these waves are named ‘Faraday waves’ after their first observer.
Faraday waves have been discussed by [2–8] and others. While the phenomenon of Faraday
waves may be one of the most famous, water wave phenomena in a basin had certainly been
observed long before. Standing waves of a high resonance frequency corresponding to an
asymmetric mode were observed when the forcing frequency was close to that high resonance
frequency. If the forcing frequency was increased and close to the sum of that high frequency
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and the lowest frequency of axisymmetric modes, waves of that low frequency were observed
as well. Self-excited vibration of shell-liquid coupled systems were discussed by Liu et al
[9]. It was shown by Sun et al [10] that for an asymmetric mode by itself the center of the
surface is very calm, whereas the center of the region is where the maximum amplitude for
an axisymmetric mode is observed. These observations motivated more theoretical studies.
An exact solution of the linearized problem of harmonic forcing applied to the side walls of a
circular basin was found by Shen et al [11].

Nonlinear amplitude equations are often used to model Faraday waves. The weakly
nonlinear problem was discussed in [12] under the assumption that the forcing was close to a
resonance frequency or twice the fundamental frequency. A multi-scale asymptotic expansion
approach was used to find the equations governing surface waves in each of these cases. It was
shown that the amplitude of such surface waves is bounded, except when twice the fundamental
frequency also happens to be a resonance frequency. Several recent papers have emphasized
the significance of nonlinear terms (cubic in the wave amplitude) in these equations, showing
that their retention in the model is often vital to successfully describe hysteresis in Faraday
waves (Milner [13], Craik and Armitage [14], Decent [15] and Decent and Craik [16]), pattern
selection (Miles [17]) and sideband instability (Decent and Craik [18, 19]). The coefficients,
and particularly the signs of the coefficients, of these cubic terms have been shown to be critical
to the behavior of Faraday waves. The role of resonant triad interactions in the formation
of Faraday wave patterns has been investigated extensively by Vinals and co-workers for
both the cases of single frequency forcing [20, 21] and two-frequency forcing [22]. The
most detailed two-frequency calculations focused on the situation where the frequency ratio
was 1

2 , and the onset surface wave response was subharmonic with the forcing. Zhang and
Vinals [21] compared their theoretical results with the experimental results of Muller [23],
who observed subharmonic hexagons, triangles and squares near the bicritical point—which
pattern was observed depending on a relative phase between the frequency ω and 2ω sinusoidal
waveforms in the forcing function.

Some research that deals with rectangular containers was done by Huntley [24] and
Mahony and Smith [25]. In [25], the deep water problem for a rectangular organ pipe is
considered. The flow field was assumed to be two dimensional. It was shown that surface
water waves may be excited by high-frequency acoustic fields. More recently, Yoshimatsu and
Funakoshi [26] investigated the resonance waves in square containers caused by horizontal
oscillations. It was shown that the kind of waves observed depends on the angle of the
direction of oscillation with a container wall. A weakly nonlinear theory [27] has been
developed by an asymptotic approach for excited capillary-gravity waves in a water-filled
two-dimensional rectangular basin under some edge condition at the contact line. In that study,
they assumed that the forcing frequency is near a resonance frequency or some combination of
the resonance frequencies. By using a two timescale asymptotic expansion of the solution and
solvability conditions for the equations of the third-order approximations in the expansion,
the amplitude equations of the excited surface waves at the resonance frequencies are
derived.

The problem considered here concerns linear and nonlinear surface waves under the
action of a harmonic forcing together with the influence of gravity and surface tension in
a two-dimensional rectangular basin. The frequency of the forcing is assumed to be close
to a resonance frequency or some combination of the resonance frequencies. The outline
of the paper is as follows: in section 2, we describe the physical problem and give the exact
dimensionless equations as well as the dispersion equations. Section 3 is devoted to developing
the asymptotic solution, using multiple timescales, that leads to the modulation equations in
the resonance cases and to obtaining the analytical solutions of the fixed points as well as
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the stability conditions. Section 4 contains the numerical results, and finally conclusions are
given in section 5.

2. Formulation of the problem

Consider two incompressible immiscible semi-infinite fluids inside an infinite rectangular
box. The motion is assumed to be represented by potential functions (according to the viscous
potential flow theory [28–30]. Let (x, y) and z be the horizontal and vertical fixed reference
coordinates of a rectangular infinite container C having a cross-section S which is assumed
to be independent of z, and with n being an outward vector normal to C. The z-axis is
positive inside the upper liquid. The distance, the time and the velocity potential φj are made

dimensionless using
(

T
gρ1

) 1
2 ,

(
T

g3ρ1

) 1
4 and

(
T

g
1
3 ρ1

) 3
2 , respectively, where g is the gravity assumed

to be acting along the negative z-axis and T is the surface tension. The quantities ρ1 and ρ2

are the densities of the lower and upper fluids, respectively.
The basic equations that govern the perturbed velocity potential φj with the boundary

conditions are

∇2φj = 0, j = 1, 2, (1)

∂φj

∂z
= ∂η

∂t
+ ∇xyη · ∇xyφj , z = η, j = 1, 2, (2)

ρ

(
∂φ2

∂t
+

1

2
|∇φ2|2

)
−

(
∂φ1

∂t
+

1

2
|∇φ1|2

)
+ (ρ − 1)(1 + f1 cos(�1t) + f2 cos(�2t))η

+ 2µ̃2

(
∂2φ2

∂z2
− ∂η

∂x

∂2φ2

∂x∂z
− ∂η

∂y

∂2φ2

∂x∂z

)

− 2µ̃1

(
∂2φ1

∂z2
− ∂η

∂x

∂2φ1

∂x∂z
− ∂η

∂y

∂2φ1

∂x∂z

)
+ ∇2

xyη

= 0, z = η, j = 1, 2, (3)

where ρ = ρ2/ρ1, f1 and f2 are called the forcing amplitudes of the oscillating external forces,

and µ̃j = µj

(
1

gT 3ρ1

) 1
4 , since µ1,2 are the viscosity coefficients.

The solution of (1) that satisfies (2) and (3) is

φj =
∑

n

Ajn(t)ψn(x, y) e(−1)j knz. (4)

The eigenfunction ψn(x, y) satisfies the equation

∇2
xyψn + k2

nψn = 0 (5)

with the boundary condition

∇ψn · n = 0 on C, (6)

where ∫∫
ψnψm dS = δnmS (7)

and S is the box cross section and the considered container of dimensionless length M by N.
We can put the interfacial elevation in the form

η =
∑

n

ζn(t)ψn(x, y). (8)
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Expanding all the boundary conditions at the interface z = η(x, y, t) about z = 0 using
Maclaurin’s series and substituting equations (4) and (8) into theses conditions and using the
orthonormality condition, we have the following dispersion equations:

ζ̈n +
2(µ̃1 + µ̃2)

1 + ρ
ζ̇n +

(N2π2 + M2π2 − N2M2(ρ − 1))kn

N2M2(1 + ρ)
ζn

+
(1 − ρ)(f1 cos(�1t) + f2 cos(�2t))kn

1 + ρ
ζn + χn = 0. (9)

In the case of three modes, we put ζn(t) = 0 for n � 4. The quantity χn is a function of
ζ1(t), ζ2(t), ζ3(t) and their derivatives.

3. The solution method

In this work, we study the behavior of the three modes of interfacial Faraday waves caused by
the vibration of a container. The method of multiple timescales will be used to determine a
second-order uniform expansion of the solution of equations (9) for small but finite amplitudes
in the resonance cases: (1) ω1 + ω2 = ω3 + εσ1,�1 = 2ω1 + εσ̂1, and �2 = 2ω2 + εσ̂2.
(2) ω2 + ω3 = ω1 + εσ2,�1 = 2ω2 + εσ̂3 and �2 = 2ω3 + εσ̂4. The detuning parameters σ1,2

and σ̂1,2,3,4 have been used to express the nearness of the suggested resonance cases.
We assume the forcing amplitudes fj and the viscosity numbers µ̃j to be an ©(ε) quantity

(ε � 1) so that fj = εδj and µ̃1 + µ̃2 = εµ̂�. We introduce a long timescale t1 by means of
the substitution ∂

∂t
→ ∂

∂t
+ ε ∂

∂t1
. We expand the interfacial elevation in powers of ε as

ζn = εζ1n(t, t1) + ε2ζ2n(t, t1) + · · · . (10)

Substituting equation (10) into equations (9), the solution of the first-order problem can be
expressed in the form

ζ1n = An(t1) eiωnt + Ān(t1) e−iωnt , (11)

where Ān(t1) is the complex conjugate of An(t1), and

ω2
n = (N2 + M2)π2 + M2N2(1 − ρ)

M2N2(1 + ρ)
. (12)

3.1. Modulation equations

Substituting equations (10) and (11) into equations (9) and eliminating the terms that produce
secular terms, in cases of resonance, we have the following solvability conditions.

3.1.1. The first resonance case.

iȦ1 + iα1A1 + α2 eiσ̂1t1Ā1 + α3 eiσ1t1Ā2A3 = 0, (13)

iȦ2 + iβ1A2 + β2 eiσ̂2t1Ā2 + β3 eiσ1t1Ā1A3 = 0, (14)

iȦ3 + iγ1A3 + γ2 e−iσ1t1A1A2 = 0. (15)
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3.1.2. The second resonance case.

iȦ1 + iα1A1 + α4 eiσ2t1A2A3 = 0, (16)

iȦ2 + iβ1A2 + β4 eiσ̂3t1Ā2 + β3 e−iσ2t1A1Ā3 = 0, (17)

iȦ3 + iγ1A3 + γ3 eiσ̂4t1Ā3 + γ4 e−iσ2t1A1Ā2 = 0, (18)

where Ȧn = dAn

dt1
.

The quantities α′s, β ′s and γ ′s are given in the appendix.

3.2. Fixed points

In this paper, we discuss the first case of resonance in detail, and similarly the other case can
be investigated. To investigate the solution of equations (13)–(15), it is convenient to express
the complex amplitudes of the three modes of the resonant waves in the polar form

Aj = aj eiϒj , j = 1, 2, 3 (19)

where the aj and ϒj are the modified real amplitudes and phases of the three modes.
Substituting equation (19) into equations (13)–(15) and separating the real and imaginary
parts, we then have

da1

dt1
+ α1a1 + α2a1 sin ψ1 + α3a2a3 sin ψ2 = 0, (20)

−a1
dϒ1

dt1
+ α2a1 cos ψ1 + α3a2a3 cos ψ2 = 0, (21)

da2

dt1
+ β1a2 + β2a2 sin ψ3 + β3a1a3 sin ψ2 = 0, (22)

−a2
dϒ2

dt1
+ β2a2 cos ψ3 + β3a1a3 cos ψ2 = 0, (23)

da3

dt1
+ γ1a3 − γ2a1a2 sin ψ2 = 0, (24)

−a3
dϒ3

dt1
+ γ2a1a2 cos ψ2 = 0, (25)

where ψ1 = −2ϒ1 + σ̂1t1, ψ2 = −ϒ1 − ϒ2 + ϒ3 + σ1t1, ψ3 = −2ϒ2 + σ̂2t1.

In order to demonstrate the steady-state response of the system under consideration, we
must determine the fixed points of equations (20)–(25). However, these will be obtained by
setting d{aj ,ψj }

dt1
= 0.

Then, it follows that
dϒ1

dt1
= 1

2
σ̂1,

dϒ2

dt1
= 1

2
σ̂2,

dϒ3

dt1
= 1

2
(σ̂1 + σ̂2) − σ1. (26)

Hence the triple (a1, a2, a3) will be obtained by solving the following system of algebraic
equations:

α1a1 + α2a1 sin ψ1 + α3a2a3 sin ψ2 = 0, (27)

− 1
2 σ̂1a1 + α2a1 cos ψ1 + α3a2a3 cos ψ2 = 0, (28)

β1a2 + β2a2 sin ψ3 + β3a1a3 sin ψ2 = 0, (29)
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− 1
2 σ̂2a2 + β2a2 cos ψ3 + β3a1a3 cos ψ2 = 0, (30)

γ1a3 − γ2a1a2 sin ψ2 = 0, (31)

−[
1
2 (σ̂1 + σ̂2) − σ1

]
a3 + γ2a1a2 cos ψ2 = 0. (32)

There are two possible cases:

either a1 = a2 = a3 = 0
or

a2
1 =

−λ4 ±
√

λ2
4 − 4λ2λ3

2λ1λ3
, (33)

a2
2 =

−λ7 ±
√

λ2
7 − 4λ5λ6

2λ1λ6
, (34)

a2
3 =

[−λ4 ±
√

λ2
4 − 4λ2λ3

][−λ7 ±
√

λ2
7 − 4λ5λ6

]
4λ1λ3λ6

, (35)

where λ1, . . . , λ7 are given in the appendix.
From equation (33), it is concluded that:

(i) when λ4 > 0 then a1 has only one possible real root whenever

4
(
β2

1 − β2
2

)
+ σ̂ 2

2 < 0; (36)

(ii) when λ4 < 0 there are two possibilities:

either a1 has only one possible real root as[
2β1γ1 − σ̂2

(
1
2 (σ̂1 + σ̂2) − σ1

)]2 − [
4
(
β2

1 − β2
2

)
+ σ̂ 2

2

][
γ 2

1 +
(

1
2 (σ̂1 + σ̂2) − σ1

)2]
> 0, (37)

or a1 has two possible real roots as the following condition is satisfied:

0 <
[
4
(
β2

1 − β2
2

)
+ σ̂ 2

2

][
γ 2

1 +
(

1
2 (σ̂1 + σ̂2) − σ1

)2]
<

[
2β1γ1 − σ̂2

(
1
2 (σ̂1 + σ̂2) − σ1

)]2
. (38)

Likewise, equation (34) shows that there are two possible cases for the amplitude a2 of
the second mode:

(i) when λ7 > 0 there exist only one possible real root if we have

4
(
α2

1 − α2
2

)
+ σ̂ 2

1 < 0; (39)

(ii) when λ7 < 0 we have two possible cases:

either a2 possesses only one possible real root under the condition[
2α1γ1 − σ̂1

(
1
2 (σ̂1 + σ̂2) − σ1

)]2 − [
4
(
α2

1 − α2
2

)
+ σ̂ 2

1

][
γ 2

1 +
(

1
2 (σ̂1 + σ̂2) − σ1

)2]
> 0, (40)

or a2 has two possible real roots if the following condition is satisfied:

0 <
[
4
(
α2

1 − α2
2

)
+ σ̂ 2

1

][
γ 2

1 +
(

1
2 (σ̂1 + σ̂2) − σ1

)2]
<

[
2α1γ1 − σ̂1

(
1
2 (σ̂1 + σ̂2) − σ1

)]2
. (41)

As for the amplitude a3 of the third mode, we have concluded, based on equation (35),
that there are four possible cases:

(i) when λ4 > 0 and λ7 > 0, the amplitude a3 will possess only one possible real root such
that conditions (36) and (39) are satisfied;
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(ii) when λ4 > 0 and λ7 < 0, a3 has only one real root when conditions (36) and (40) are
satisfied, while it has two possible real roots as conditions (36) and (41) are satisfied;
(iii) when λ4 < 0 and λ7 > 0, equation (35) has one possible real root as conditions (37) and
(39) are satisfied, while it has two possible real roots as conditions (38) and (39) are satisfied;
(iv) when λ4 < 0 and λ7 < 0, equation (35) admits only one real root whenever
conditions (37) and (40) are satisfied, two real roots when either conditions (37) and (41)
or (38) and (40) are satisfied, while it has four possible real roots as conditions (38) and (41)
are satisfied.

3.2.1. Modified amplitudes equations. In order to demonstrate the stability criteria of the
obtained steady-state solutions, it is convenient to make the following transformations for the
unknown functions A1, A2, A3:

A1 = B1 e
i
2 σ̂1t1 , A2 = B2 e

i
2 σ̂2t1 , A3 = B3 ei( 1

2 (σ̂1+σ̂2)−σ1)t1 . (42)

Then equations (13)–(15) become the following amplitude equations:

i
dB1

dt1
+

(
−1

2
σ̂1 + iα1

)
B1 + α2B̄1 + α3B̄2B3 = 0, (43)

i
dB2

dt1
+

(
−1

2
σ̂2 + iβ1

)
B2 + β2B̄2 + β3B̄1B3 = 0, (44)

i
dB3

dt1
+

(
σ1 − 1

2
(σ̂1 + σ̂2) + iγ1

)
B3 + γ2B1B2 = 0. (45)

It can be verified from (42) that the stable property of the system in terms of the amplitudes
A1, A2, A3 is equivalent to that of the amplitudes B1, B2, B3. Dividing the unknown variables
into real and imaginary parts (Bj = pj + iqj ), the amplitude equations (43)–(45) yield the
following nonlinear system of ordinary differential equations:

dp1

dt1
+ α1p1 −

(
1

2
σ̂1 + α2

)
q1 + α3(p2q3 − p3q2) = 0, (46)

dq1

dt1
+

(
1

2
σ̂1 − α2

)
p1 + α1q1 − α3(p2p3 + q2q3) = 0, (47)

dp2

dt1
+ β1p2 −

(
1

2
σ̂2 + β2

)
q2 + β3(p1q3 − p3q1) = 0, (48)

dq2

dt1
+

(
1

2
σ̂2 − β2

)
p2 + β1q2 − β3(p1p3 + q1q3) = 0, (49)

dp3

dt1
+ γ1p3 +

(
σ1 − 1

2
(σ̂1 + σ̂2)

)
q3 + γ2(p1q2 + p2q1) = 0, (50)

dq3

dt1
−

(
σ1 − 1

2
(σ̂1 + σ̂2)

)
p3 + γ1q3 − γ2(p1p2 − q1q2) = 0. (51)

The system of equations (46)–(51) can be rewritten in the following form,
dΘ
dt1

= ξ(Θ), (52)

where Θ = (p1, q1, p2, q2, p3, q3)
T represents a column matrix (the transpose of the row

matrix (p1, q1, p2, q2, p3, q3)) and ξ is a six-dimensional vector function of the variables pj
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and qj . If Θ = Θ0 represents a steady-state solution of equation (52), then we can check the
linear stability of this solution by superimposing on it a disturbance a time-dependent vector
function χ(t1) and hence we obtain the following perturbed equation:

dχ

dt1
= ξ(Θ0 + χ). (53)

At this stage, we expand equation (53) about Θ0 for a small χ, utilizing the relation ξ(Θ0) = 0,
and retaining only the linear terms of χ, we have the linear variational equation

dχ

dt1
= (∇ξ(Θ0))χ. (54)

Now, a steady-state solution Θ0 for equation (52) will be asymptotically stable if the real
parts of all the eigenvalues of the corresponding matrix ∇ξ(Θ0) (a matrix of dimension 6 × 6)
are negative and otherwise, we have an unstable solution.

However, the eigenvalues ν of the system of equations (46)–(51) will be determined from
the following equation:∣∣∣∣∣∣∣∣∣∣∣∣∣

ν + α1 −α2 − 1
2 σ̂1 α3q3 −α3p3 −α3q2 −α3p2

−α2 + 1
2 σ̂1 ν + α1 −α3p3 −α3q3 −α3p2 −α3q2

β3q3 −β3p3 ν + β1 −β2 − 1
2 σ̂2 −β3q1 β3p1

−β3p3 −β3q3 −β2 + 1
2 σ̂2 ν + β1 −β3p1 −β3q1

γ2q2 γ2p2 γ2q1 γ2p1 ν + γ1 − 1
2 (σ̂1 + σ̂2) + σ1

−γ2p2 γ2q2 −γ2p1 γ2q1
1
2 (σ̂1 + σ̂2) − σ1 ν + γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

or

F(ν) = ν6 + b5ν
5 + b4ν

4 + b3ν
3 + b2ν

2 + b1ν + b0 = 0. (55)

The necessary and sufficient conditions for the real parts of all the roots of equation (55) to be
non-positive—i.e. for the considered perturbation to be stable—are [31]

Dj > 0, j = 1, 2, . . . , 6 (56)

where the quantities Dj are given in the appendix.
To demonstrate the stability behavior of the trivial steady-state solution, we set pj = 0,

qj = 0 in equation (55). Then we have the characteristic equation

F(ν) = ν6 + b̃5ν
5 + b̃4ν

4 + b̃3ν
3 + b̃2ν

2 + b̃1ν + b̃0 = 0, (57)

where the coefficients b̃0, b̃1, b̃2, . . . are given in the appendix.

4. Numerical applications

In this section, our main goal is to present a graphical illustration for the theoretical analysis
that has been performed in this work. Firstly, the frequency–response curves corresponding
to the possible steady-state solutions of the modulation equations are examined. We focus, of
course, our attention on the positive real roots of the modified-amplitude solutions. However,
the steady-state amplitudes an as well as the phases γn depend on the parameters: the two
amplitudes f1, f2 of excitation, the detuning parameters σ1, σ̂1, σ̂2, and the viscosity factor
µ̂�. Plots of the amplitudes an versus the detuning parameters σ̂1 and σ̂2 are presented in
figures 1–3. The stability of the possible non-negative real fixed points is investigated via
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Figure 1. Frequency–response curves for the case ω2 � 2ω1 and ω2 � 2ω1, in the plane an−σ̂1, for
a system having M = 1.5, L = 1, ρ = 0.85, k1 = 1.1, k2 = 1.9, ε = 0.05, µ̂� = 0.05, f1 = 10,

f2 = 19.4126, σ̂2 = 0 : (a) σ1 = 0, (b) σ1 = 0.058, (c) σ1 = −0.058.
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Figure 2. Frequency–response curves for the same case of resonance as in figure 1 in the plane
an − σ̂1, for the same system considered in figure 1 but f1 = 20, f2 = 21, σ1 = 0.04 and σ̂2 = 0:
(a) µ̂� = 0, (b) µ̂� = 0.02, (c) µ̂� = 0.054.
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Figure 3. Variation of the steady-state solutions in the an − σ̂2 plane for the same system
considered in figure 1, but µ̂� = 0.02, f1 = 15, σ̂1 = 0 and σ1 = 0.1 : (a) f2 = 12.9, (b) f2 = 28,

(c) f2 = 45.

examination of the stability conditions given by (56). Figure 1 represents the influence of the
variation of the detuning parameter σ1 on the frequency–response curves for the resonance
case assigned by the relations ω2 � 2ω1 and ω2 � 2ω1, in the plane an − σ̂1. However, some
variation of the parameter σ1 has been successively considered for the sake of comparison
in all parts of figure 1, with non-dimensional physical variables given by M = 1.5, L = 1,

ρ = 0.85, k1 = 1.1, k2 = 1.9, ε = 0.05, µ̂� = 0.05, f1 = 10, f2 = 19.4126, σ̂2 = 0
and σ1 = 0. As shown in figure 1(a), it is clear that when σ̂ � −0.148 or σ̂1 � 0.148,

the modulational equations admit three possible steady-state solutions: the trivial solutions
(the steady-solutions with initial zero modified amplitudes) which, in view of the stability
conditions (56), is concluded to be stable (sink) and two nontrivial solutions (the steady-
solution with at least nonzero initial modified amplitude). The first solution (the larger one)
which is stable (sink), while the second (the smaller one) is unstable (saddle point). Thus
the system response is either trivial or periodic. In other words, the resonant free surface
waves either possess initially and subsequently zero modified amplitudes or they possess
nonzero modified amplitudes that vary in a periodic manner. On the other hand, we observe
that the lower fixed point has only two possible modes, the second and the third modes,
while the modified amplitude that corresponds to the first mode (a1) is not possible because
of its being either negative or complex. When −0.148 � σ̂1 � 0.148, the system of the
modulational equations admits two possible fixed points. The first one is the trivial solution
which is unstable (saddle) and nontrivial solution (sink). It should be noted that both an

and −an represent solutions of the steady-state modified equations and thereby, in the light
of the bifurcation theory, the system exhibits a subcritical pitchfork bifurcation at the values
σ̂1 = −0.148 and 0.148. In this case, when σ̂1 increases past −0.148, the sink at the origin
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becomes a saddle point and two saddles (corresponding to an and −an) will shrink towards the
sink at the origin at σ̂1 = −0.148. In a similar manner, as σ̂1 decreases past the value 0.148,

the sink at the origin turns to a saddle point at the value σ̂1 = 0.148. However, according to the
bifurcation theorems, a bifurcation of the Hopf type would be expected to occur in the presence
of such a symmetric property of system solutions. This result is in good agreement with those
obtained by Miles [17]. The graphs displayed in figure 1(b) demonstrate the variation of
the modified amplitudes of the steady-state solutions with the detuning parameter σ̂1 for the
same system as considered in figure 1(a), but with σ1 = 0.058. This figure shows that the
positive value of σ1 leads to shifting the frequency–response curves to right and moreover
these curves lost its symmetry about the vertical axis. On the other hand, in view of the
stability conditions (56), it is found that the trivial steady-state solution lacks such conditions
throughout the specific interval satisfying the relation 0.02 � σ̂1 � 0.13, while this solution is
still stable throughout the same domain of σ1 as determined in the case of the exact resonance
(σ1 = 0) studied in figure 1(a). Further, the characteristic equation (55) shows that within the
interval 0.02 � σ̂1 � 0.13, the nontrivial solution loses its stability with a pair of complex
conjugate eigenvalues associated with positive real parts. In other words, when σ̂1 increases
above 0.02 or decreases below 0.13, the nontrivial fixed point loses its stability, where the
complex eigenvalues of the dispersion relation cross the imaginary axis into the right half of
the complex plane. Consequently, the points σ̂1 = 0.02, 0.13 represent Hopf bifurcation ones
for the investigated system. Thereby, based on the Hopf bifurcation theorems, two limit-cycle
solutions of the evolution equations will be created near the points σ̂1 = 0.02, 0.13 where its
sizes grow gradually from zero and proportional to |σ̂1 −0.02| 1

2 and |σ̂1 −0.13| 1
2 , for σ̂1 closes

to 0.02, 0.13, respectively. Figure 1(c) illustrates a picture of the system–response curves with
the consistency of the model as in figure 1(a), but as σ1 = −0.058. This portrait clearly shows
that the behavior of the system response is very similar to that demonstrated in figure 1(b), but
the system has lost its symmetry in this time via shifting the curves to lift.

The effect of changing the factor µ̂� on the qualitative response of modified amplitudes
with the parameter σ̂1 is depicted in figures 2(a)–(c), for the same system considered in figure 1
but f1 = 20, f2 = 21, σ1 = 0.04, σ̂2 = 0. In figure 2(a) the effect of the factor µ̂� is switched
off, while in the remaining parts this effect is present where the values of µ̂� are increased to
0.02, 0.054, respectively. In part (a), we have remarked that as σ̂1 � −0.303, or σ̂1 � 0.303,

we observe that the system has three possible steady-state solutions: the trivial solution, which
is stable and two nontrivial solutions. Each of these solutions of course includes, in general,
three possible modes. The first nontrivial solution (the larger one), which is stable, has three
possible modes, whereas the second solution (the smaller one), which is unstable, has only the
second and third modes while the first mode is not existent because of its being either negative
or complex. In the intermediate region satisfying the relation −0.303 � σ̂1 � 0.303, it is
found that the system has only two possible fixed points; each of them has three modes. The
trivial solution is unstable (saddle), while the other solution is stable except for the specific
range 0.02 � σ̂1 � 0.21. Furthermore, the eigenvalue relation (55) shows that the nontrivial
solution loses its stability via Hopf bifurcation at the points σ̂1 = 0.02, 0.21. This indicates
that in the neighboring of the points σ̂1 = 0.02 and 0.21, the modulational equations admit
aperiodic motions of the resonant waves. As the value of µ̂� is increased to 0.02, it is found
that the trivial solution is unstable in the range −0.233 � σ̂1 � 0.233, and otherwise is stable.
As for the lower nontrivial solution, it is existent and unstable in the regions σ̂1 < −0.233,

and σ̂1 > 0.233, while the upper one loses its stability via Hopf bifurcation at the points
σ̂1 = 0.04 and 0.14. Further increasing in the factor σ̂1 to the value 0.54 is considered in
figure 2(c). This portrait shows that the unstable range of the trivial solution is contracted to
−0.133 � σ̂1 � 0.133, while the unstable range of the nontrivial lower solution is enlarged to
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σ̂1 � −0.133 and σ̂1 � 0.133. Hopf bifurcation has occurred at the points σ̂1 = 0.07 and 0.11.

When the parts of figure 2 are compared with one another, we can conclude, broadly speaking,
that the qualitative behavior of the stationary solutions of the modulational equations in the
three cases are the same. Moreover, we conclude that the increasing in the viscosity factor
enlarges the ranges of stability with respect to both the trivial solution as well as the upper
nontrivial one, whereas it increases the region of instability with respect to the lower solution.
This means that when the values of the viscosity factor are increased the Hopf bifurcation
points move towards each other.

The aim of the graphs displayed in figures 3(a)–(c) is to justify the influence of the
increase in the amplitude f2 of the second mode of excitation on the frequency–response
curves with the variation of the detuning parameter σ̂2, as a bifurcation variable. The same
system of figure 1 is considered. The parameters used in plotting figure 3(a) are µ̂� = 0.02,

f1 = 15, σ̂1 = 0, σ1 = 0.1 and f2 = 12.9. This figure elucidates that when σ̂2 � −0.1 or
σ̂2 � 0.1, the system possesses three different stationary solutions: a trivial solution, which
is stable, and two nontrivial solutions with the larger one being stable while the smaller
solution being unstable. Moreover, we observe that the larger solution has three possible
modes (corresponding to the three modes of the resonant waves), while the lower solution has
only two possible modes: the first and the third modes where the second is not admissible
being always corresponds to complex number. As σ̂2 increases past −0.1 or decreases below
0.1 the trivial solution loses its stability and the modulational equations possess only two
possible stationary solutions. A search, in the light of the characteristic equation (55) together
with the stability conditions (56), reveals that the nontrivial solution loses its stability at the
points σ̂2 = −0.04 and 0.02, with corresponding complex conjugate eigenvalues having real
positive real parts. Thus the system exhibits Hopf bifurcation at the points σ̂2 = −0.04 and
0.02. As the value of the amplitude f2 is increased to 28 in figure 3(a), we conclude that
the system undergoes a transcritical bifurcation at the points σ̂2 = −0.271 and 0.271, and
the Hopf bifurcation has occurred at the points σ̂2 = −0.06, and 0.05. A further increasing
in the parameter f2 to the value 45, as illustrated in part 3(c), clearly shows that the system
still undergoes the transcritical bifurcation at σ̂2 = −0.446 and 0.446, while exhibiting Hopfs
bifurcation at σ̂2 = −0.085 and 0.08. When the parts of figure 3 compared with one another,
we can conclude that there is a resemblance in the qualitative behavior of the system as the
second mode of the amplitude excitation f2 is increased. However, having noted the regions
of stability and instability of the steady-state solutions, a great influence of the increase in
the amplitude f2 on the system response has been observed. It is noted that the continuous
increase in δ2 contracts the range of stability with respect to the trivial solution and makes
the Hopf bifurcation points to move away from each other. On the other hand, this increase
leads to the contraction of the existence region of the unstable lower fixed point solution. In
order to be sufficiently clear and comprehensive and to provide enough information about
the behavior of the system being investigated, phase portraits for the set of the autonomous
modulational equations rather than the original evolution equations must be performed using
computer simulations based on numerical techniques. In practical solutions, it is well to keep
in mind that the fixed point solutions correspond to periodic motion for the interfacial waves,
whereas limit-cycle solutions correspond to aperiodic motions of the free surface waves,
and noting that limit cycles are inherently nonlinear phenomena, they cannot occur in linear
systems.

The aim of the graphs displayed in figures 4 and 5 is to investigate the phase portrait in the
q1 −p1 and q3 −p3 planes as well as the variation p1, q1, p3 and q3 with the evolution of time
in the neighborhood of Hopf bifurcation that the system undergoes at the point σ̂1 = 0.01,
and with non-dimensional variables: M = 1.5, L = 1, ρ = 0.85, k1 = 1.1, k2 = 1.9,
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Figure 4. Projections of the trajectory of the modulation equations on the q1 − p1 plane as well
as the variation of p1, q1 with the evolution of time at the value σ̂1 = 0.01, in the neighborhood of
the Hopf bifurcation point at σ̂1 = 0.02, with the other parameters as in figure 1.
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Figure 5. The same structure as in figure 4, but for p3 and q3.
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Figure 6. The same structure as in figure 4, but σ̂1 = 0.02.

ε = 0.05, µ̂� = 0.05, f1 = 10, f2 = 19.4126, and σ̂2 = 0. Figure 4(a) illustrates the
phase portrait in the q1 − p1 plane, which represents a stable spiral that spirals with sense of
clockwise rotation towards the limit cycle. On the other hand, figures 4(b), (c) clearly show
the continuous decay of both of p1 and q1 with the development of time. On the other hand,
we observe that the variation of each of p1 and q1 is very rapidly for the relatively small values
of time, while it is very slower for large values of time. Figure 5 illustrates the phase portrait in
the q3 −p3 plane as well as the behavior of p3 and q3 with the evolution of time. It is observed
that the qualitative behavior of the system in both cases is very similar. However, the direction
of spiraling in the two cases is opposite to each other. The phase portraits in the planes q1 −p1

and q3 − p3 at the Hobf bifurcation point σ̂1 = 0.02 are demonstrated in figures 6(a), 7(a),
while figures 6(a), (b) and 7(a), (b) show the records of the corresponding variations in the
modified amplitudes p1, q1, p3 and q3. It is observed that the limit cycle has an elliptical form
in the q1 − p1 plane, while it has an oval form in the q3 − p3 plane. Further, we note that the
solutions of the variable p1, q1, p3 and q3 settle down to be very similar to that of a sinusoidal
oscillation of constant amplitudes, but with short time periods in the case of p3 and q3.
Figures 8 and 9 show the computer-generated phase portraits as well as the solutions of the
modulation equations as functions of time for the same values of the physical parameters
as in figures 6 and 7, except that, the detuning parameter σ̂1 value is increased to 0.04
in the neighborhood of the limit cycle. These graphs clearly show that the trajectories in
the neighborhood of the limit cycle represent unstable spirals that spiral towards this cycle
and the solutions gradually grow with time. The inspection of the diagrams depicted in
figures 4–9 then reveals that in the neighboring of the Hopf bifurcation point σ̂1 = 0.02 (below
or above), the trajectories spiral asymptotically towards the limit cycle and thereby this cycle
is of a stable kind or attracting. In view of the bifurcation theorems, it follows that the point
σ̂1 = 0.02 represents a supercritical Hopf bifurcation. Stable limit cycles are very important
scientifically—they model systems that exhibit self-sustained oscillations. In other words,
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Figure 7. The same structure as in figure 5, but σ̂1 = 0.02.
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Figure 8. The same structure as in figure 4, but σ̂1 = 0.04.

these systems oscillate even in the absence of external periodic forcing. It is expected that as σ̂1

is increased over the values 0.04 that limit cycles, for instance in the planes q1−p1 and q3−p3,
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Figure 9. The same structure as in figure 5, but σ̂1 = 0.04.
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Figure 10. The phase portraits of the modulation equations as in figure 4, but σ̂1 has been increased
to 0.072.

will have a period doubling, period quadrupling, . . . etc. In figures 10 and 11, where σ̂1

possesses the value 0.072, we have two limit cycles that around themselves many times (many
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Figure 11. The same structure as in figure 10, but for p3 and q3.

0 200 400 600 800 1000
t

-0.005

0

0.005

0.01

q1

0 200 400 600 800 1000
t

-0.002

-0.001

0

0.001

0.002

0.003

0.004

p3

-0.002 -0.001 0 0.001 0.002 0.003
p1

-0.005

0

0.005

0.01

q1

(a) (b)

(c)

Figure 12. Projections of the modulation equations as in figure 4 but at σ̂1 = 0.1.

period doubling). However, after an infinite cascade of further period doubling, we obtain
the strange attractor (the transition to chaotic motion) at the σ̂1 = 0.1, as shown in figures 12
and 13.
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Figure 13. The same structure of figure 12 but for p3 and q3.

5. Conclusions

This work considers two semi-infinite layers of incompressible fluids in a rectangular container.
The considered problem studies the resonant waves of three modes on the interface between
fluids acted on by a periodic excitation along the direction normal to the liquid–liquid
interface. The longitudinally exciting acceleration is assumed to decompose into two different
frequencies. Using the method of multiple timescales, a system of nonlinear autonomous six-
order ordinary differential equations governing the modulation of the amplitudes and phases
of the resonant waves is obtained which is, in turn, exploited for determining the steady-state
solutions and hence their stability. Conditions of existence of both regular periodic and chaotic
regimes are obtained.

The numerical computations based on the modulational equations are achieved in order
to investigate the evolutions of modified amplitudes with the development of time as well as
the phase-plane trajectory. According to the theoretical analysis together with the numerical
computations, we can conclude the following:

• The frequency response of the steady-state solutions, with the detuning parameter σ̂1 as a
control one, the system response is either trivial or periodic and these curves exhibit only
the pitchfork bifurcation at the exact resonance case.

• In the non-exact resonance case, the symmetry of the solution has been broken and a Hopf
bifurcation type is created. This elucidates that the initial choice of σ̂1 has an important
role in determining the qualitative behavior of the stationary solutions.

• The increase of the viscosity factor µ̂� has a regular stabilizing effect. Further, it moves
the two created Hopf bifurcations towards each other.
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• The increase in the values of the exciting amplitudes contacts the regions of the stable
steady-state solutions and moreover it causes the Hopf bifurcations to move away from
each other.

• As the values of the control parameter σ̂1 increase past the Hopf bifurcation point, the
limit cycle goes more around itself before the transition to the case of the strange attractor.
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[
1
2 (σ̂1 + σ̂2) − σ1

]
,

λ5 = γ 2
2

(
α2

1 − α2
2 + 1

4 σ̂ 2
1

)
, λ6 = α2

3

[
γ 2

1 +
(

1
2 (σ̂1 + σ̂2) − σ1

)2 ]
,

λ7 = 2α1α3γ1γ2 − σ̂1α3γ2
[

1
2 (σ̂1 + σ̂2) − σ1

]
.

D1 = b1, D2 =
∣∣∣∣b1 b0

b3 b2

∣∣∣∣ , D3 =
∣∣∣∣∣∣
b1 b0 0
b3 b2 b1

b5 b4 b3

∣∣∣∣∣∣ , D4 =

∣∣∣∣∣∣∣∣

b1 b0 0 0
b3 b2 b1 b0

b5 b4 b3 b2

0 1 b5 b4

∣∣∣∣∣∣∣∣
,

D5 =

∣∣∣∣∣∣∣∣∣∣

b1 b0 0 0 0
b3 b2 b1 b0 0
b5 b4 b3 b2 b1

0 1 b5 b4 b3

0 0 0 1 b5

∣∣∣∣∣∣∣∣∣∣
, D6 =

∣∣∣∣∣∣∣∣∣∣∣∣

b1 b0 0 0 0 0
b3 b2 b1 b0 0 0
b5 b4 b3 b2 b1 b0

0 1 b5 b4 b3 b2

0 0 0 1 b5 b4

0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

b̃0 = 1
4

(
α2

1 − α2
2

) [
γ 2

1 + (σ1 − σ̂1)σ1 +
(

1
2 σ̂1 − σ1

)
σ̂2

]
σ̂ 2

2

+ 1
16

(
α2

1 − α2
2 + γ 2

1 + σ1(σ1 − σ̂1) + 1
64 σ̂ 4

1

)
σ̂ 2

1 σ̂ 2
2 + 1

16 (2σ̂1 − σ1)σ̂
2
1 σ̂ 3

2

+ 1
16

(
α2

1 − α2
2 + 1

4 σ̂ 2
1

)
σ̂ 4

2 +
(
β2

2 − β2
1

)[
1
4

(
α2

2 − α2
1

)
(2σ̂1 + σ̂2)σ̂2

− 1
16 (2σ̂1 + σ̂2)σ̂

2
1 σ̂2 +

(
α2

2 − α2
1 − 1

4 σ̂ 2
1

) (
γ 2

1 + σ 2
1 − σ1(σ̂1 + σ̂2) + 1

4 σ̂ 2
1

)]
,

b̃1 = 1
2

(
α2

1 − α2
2

)
γ1σ̂

2
2 + 1

2α1
(
γ 2

1 + σ 2
1

)
σ̂ 2

2 − 1
2α1σ1σ̂1σ̂

2
2 + 1

8 (α1 + γ1)σ̂
2
2 σ̂ 2

2 − 1
2α1σ1σ̂

3
2

+ 1
4α1σ̂1σ̂

3
2 + 1

8α1σ̂
4
2 +

(
β2

1 − β2
2

)(
2α1γ

2
1 + γ1

(
2α2

1 − 2α2
2 + 1

2 σ̂ 2
1

)
+ α1

(
2σ 2

1 + 0.5(σ̂1 + σ̂2)
2 − 2σ1(σ̂1 + σ̂1)

))
+ β1

(
α2

1 − α2
2 + 1

4 σ̂ 2
1

) (
2
(
γ 2

1 + σ 2
1

)
+ (σ̂1 + σ̂2)(σ̂1 + σ̂2 − 2σ1)

)
,

b̃2 = (
γ 2

1 + σ 2
1

) (
α2

1 − α2
2 + 1

4

(
σ̂ 2

1 + σ̂ 2
2

))
+

(
α2

1 − α2
2

) (−σ1σ̂1 + 1
4 σ̂ 2

1 + 1
2 σ̂1σ̂2 + 1

2 σ̂ 2
2

)
− 1

4σ1σ̂
3
1 + 1

16 σ̂ 4
1 − 1

4σ1σ2σ̂
2
1 + 1

8 σ̂ 3
1 σ̂2 + α1γ1σ̂

2
2 − 1

4σ1σ̂1σ̂
2
2 + 3

16 σ̂ 2
1 σ̂ 2

2

− 1
4σ1σ̂

3
2 + 1

8 σ̂1σ̂
3
2 + 1

16 σ̂ 4
2 +

(
β2

1 − β2
2

)(
α2

1 − α2
1 + 4α1γ1 + γ 2

1 + σ 2
1

+ 1
2 σ̂ 2

1 + 1
2 σ̂1σ̂2 + 1

4 σ̂ 2
2 − σ1(σ̂1 + σ̂2)

)
+ β1

(
4α1γ

2
1 + γ1

(
4α2

1 − 4α2
2 + σ̂ 2

1

)
+ α1(−σ1 + σ̂1 + σ̂2)

2
)
,

b̃3 = 2
(
α2

1 − α2
2

)
γ1 + 2

(
β2

1 − β2
2

)
(α1 + γ1) + 2α1

(
γ 2

1 + σ 2
1

)
+ 1

2 (α1 + γ1)σ̂
2
1 + α1σ̂1σ̂2

+
(
α1 + 1

2γ1
)
σ̂ 2

2 − 2α1σ1(σ̂1 + σ̂2) + β1
(
2α2

1 − 2α2
2 + 8α1γ1 + 2γ 2

1 + 2σ 2
1

+ σ̂ 2
1 + σ̂1σ̂2 + 1

2 σ̂ 2
2 − 2σ1(σ̂1 + σ̂2)

)
,

b̃4 = α2
1 − α2

2 + β2
1 − β2

2 + 4α1γ1 + γ 2
1 + 4β1(α1 + γ1) + σ 2

1 − σ1σ̂1 + 1
2 σ̂ 2

1

+
(−σ1 + 1

2 (σ̂1 + σ̂2)
)
σ̂2,

b̃5 = 2(α1 + β1 + γ1).
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